Hybrid ion exchangers containing Fe(III)-Cu(II) binary oxides obtained using macroreticular anion exchanger

Elżbieta Kociołek-Balawejder , Ewa Stanisławska , Katarzyna Winiarska , Juliusz Winiarski , Mariusz Hasiak , Bogdan Szczygieł , Irena Szczygieł


Considering the performance of parent Fe(III)-Cu(II) binary oxide nanoparticles in removing numerous contaminants from water, in order to prevent the release of the nanostructures into the cleaned water a deposit with the same composition was introduced into the matrix of a synthetic porous material (ion exchange resin), whereby a hybrid ion exchanger (HIX) was obtained. Amberlite 900 Cl, a commercially available strongly basic macroreticular anion exchanger, was used as the supporting material. The inorganic deposit was introduced into its structure in two steps performed batchwise at ambient temperature. Fe(III)-Cu(II) binary oxide could be deposited into the matrix of the strongly basic anion exchanger owing to the affinity of its functional groups for FeCl4− and CuCl42− ions. When in the ion exchange reaction the anion exchanger bound both the ions and the reaction medium alkalized, the respective oxides FeOOH and CuO precipitated in its structure. The oxide deposit was introduced into the ion exchanger in three ways, whereby HIXs differing in their oxide content, in the mole ratio of the oxides and in the latter's atypical distribution in the matrix of the anion exchanger were obtained. Regardless of the method of conducting the reaction, HIXs rich in oxides, e.g. 3.73 mmol (Fe, Cu) g−1 (2.35 mmol Fe and 1.38 mmol Cu g−1 at Fe/Cu = 1.7) were obtained. The products were investigated by SEM, EDXS, T/TG/DTA, XRD and VSM. The doped HIXs are characterized by a core-shell structure, where the core consists of polymeric beads and the outer thin layer contains Fe and Cu in their oxidized form. The structure of the outer layer varies depending on the procedure of precipitation. These differences are also reflected in the magnetic properties (ferromagnetic or paramagnetic interaction). CuFe2O4 was found to be present in the samples sintered at 900 and 1300°C, which proves that a ferrite can form from the deposit after a solid-state reaction at high temperatures.
Author Elżbieta Kociołek-Balawejder (EaE / IChaFT / DChT)
Elżbieta Kociołek-Balawejder,,
- Department of Chemical Technology
, Ewa Stanisławska (EaE / IChaFT / DChT)
Ewa Stanisławska,,
- Department of Chemical Technology
, Katarzyna Winiarska (EaE / IChaFT / DNCh)
Katarzyna Winiarska,,
- Department of Non-organic Chemistry
, Juliusz Winiarski - Wrocław University of Science and Technology (PWr)
Juliusz Winiarski,,
, Mariusz Hasiak - Wrocław University of Science and Technology (PWr)
Mariusz Hasiak,,
, Bogdan Szczygieł - Wrocław University of Science and Technology (PWr)
Bogdan Szczygieł,,
, Irena Szczygieł (EaE / IChaFT / DNCh)
Irena Szczygieł,,
- Department of Non-organic Chemistry
Journal seriesReactive & Functional Polymers, ISSN 1381-5148, (A 35 pkt)
Issue year2018
Publication size in sheets0.5
Keywords in EnglishAnion exchanger, Hybrid ion exchanger, Fe-Cu binary oxides, Copper ferrite, Tetrachloroferrate ion, Tetrachlorocuprate ion
Languageen angielski
Kociolek_Balawejder_Stanislawska_Winiarska_Winiarski_Hasiak_Szczygiel_Szczygiel_Hybrid_ion_exchangers.pdf 3,29 MB
Score (nominal)35
ScoreMinisterial score = 35.0, ArticleFromJournal
Ministerial score (2013-2016) = 35.0, ArticleFromJournal
Publication indicators WoS Impact Factor: 2017 = 2.975 (2) - 2017=2.843 (5); WoS Citations = 0; Scopus Citations = 0
Citation count*
Share Share

Get link to the record

* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.