Construction of Investment Strategies for WIG20, DAX and Stoxx600 with Random Forest Algorithm

Grzegorz Tratkowski


Machine learning provides powerful tools for data analysis, especially in regression and classification problems what may be used in creation of investment strategies. This paper present an efficient way of utilization of one of the machine learning algorithms on examples of stock indices: Stoxx600, WIG20 and DAX. This work concentrates on time series analysis of stock indices with Random Forest algorithm to create investment strategies based on future probabilities of declines and upswings. Taking into account some macroeconomic characteristics, technical indicators and consensus estimates, the models are trained to provide a buy signal if the output probability is above a specific threshold and sell signal in case of the opposite situation. The examination of the strategies efficiency indicates the differences in determinants among chosen stock indices.
Author Grzegorz Tratkowski (WUEB)
Grzegorz Tratkowski,,
- Wroclaw University of Economics and Business
Publication size in sheets0.5
Book Jajuga Krzysztof, Locarek-Junge Hermann, Orlowski Lucjan T., Staehr Karsten (eds.): Contemporary Trends and Challenges in Finance. Proceedings from the 5th Wroclaw International Conference in Finance, Springer Proceedings in Business and Economics, 2020, Springer, ISBN 9783030430771, [9783030430788], 250 p., DOI:10.1007/978-3-030-43078-8
Languageen angielski
Tratkowski_G_Construction_of_Investment_Strategies.pdf 228,29 KB
Score (nominal)20
Score sourcepublisherList
Citation count*
Share Share

Get link to the record

* presented citation count is obtained through Internet information analysis and it is close to the number calculated by the Publish or Perish system.